Rotationsdauer von Satellit
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Trägheitsmoment \(J, \Theta, I\) / Drehimpuls \(\vec L\) / Winkelgeschwindigkeit / Kreisfrequenz \(\omega\) /
The following formulas must be used to solve the exercise:
\(L = J \omega \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein Satellit hat die Form eines Zylinders mit einem Durchmesser von cm und einer Höhe von ebenfalls cm. Seine Masse beträgt kg. Er dreht sich zur Stabilisierung in s einmal um sein Achse. Durch den Verbrauch von Kühlflüssigkeit sinkt seine Masse um kg. Wie lange braucht der Satellit jetzt für eine Umdrehung?
Solution:
Das Trägheitsmoment des Satelliten vor Verbrauch der Kühlflüssigkeit ist: J_ frac m_r^ frac kg .m^ .kilogrammetersquared Nach Verlust der Flüssigkeit ist das Trägheitsmoment noch J_ frac m_r^ frac kg .m^ .kilogrammetersquared. Nun gilt Drehimpulserhaltung: L_ &mustbe L_ J_ omega_ J_ omega_ J_ pi f_ J_ pi f_ J_ pi fracpiT_ J_ pi fracpiT_ T_ fracJ_J_ T_ .s
Ein Satellit hat die Form eines Zylinders mit einem Durchmesser von cm und einer Höhe von ebenfalls cm. Seine Masse beträgt kg. Er dreht sich zur Stabilisierung in s einmal um sein Achse. Durch den Verbrauch von Kühlflüssigkeit sinkt seine Masse um kg. Wie lange braucht der Satellit jetzt für eine Umdrehung?
Solution:
Das Trägheitsmoment des Satelliten vor Verbrauch der Kühlflüssigkeit ist: J_ frac m_r^ frac kg .m^ .kilogrammetersquared Nach Verlust der Flüssigkeit ist das Trägheitsmoment noch J_ frac m_r^ frac kg .m^ .kilogrammetersquared. Nun gilt Drehimpulserhaltung: L_ &mustbe L_ J_ omega_ J_ omega_ J_ pi f_ J_ pi f_ J_ pi fracpiT_ J_ pi fracpiT_ T_ fracJ_J_ T_ .s
Meta Information
Exercise:
Ein Satellit hat die Form eines Zylinders mit einem Durchmesser von cm und einer Höhe von ebenfalls cm. Seine Masse beträgt kg. Er dreht sich zur Stabilisierung in s einmal um sein Achse. Durch den Verbrauch von Kühlflüssigkeit sinkt seine Masse um kg. Wie lange braucht der Satellit jetzt für eine Umdrehung?
Solution:
Das Trägheitsmoment des Satelliten vor Verbrauch der Kühlflüssigkeit ist: J_ frac m_r^ frac kg .m^ .kilogrammetersquared Nach Verlust der Flüssigkeit ist das Trägheitsmoment noch J_ frac m_r^ frac kg .m^ .kilogrammetersquared. Nun gilt Drehimpulserhaltung: L_ &mustbe L_ J_ omega_ J_ omega_ J_ pi f_ J_ pi f_ J_ pi fracpiT_ J_ pi fracpiT_ T_ fracJ_J_ T_ .s
Ein Satellit hat die Form eines Zylinders mit einem Durchmesser von cm und einer Höhe von ebenfalls cm. Seine Masse beträgt kg. Er dreht sich zur Stabilisierung in s einmal um sein Achse. Durch den Verbrauch von Kühlflüssigkeit sinkt seine Masse um kg. Wie lange braucht der Satellit jetzt für eine Umdrehung?
Solution:
Das Trägheitsmoment des Satelliten vor Verbrauch der Kühlflüssigkeit ist: J_ frac m_r^ frac kg .m^ .kilogrammetersquared Nach Verlust der Flüssigkeit ist das Trägheitsmoment noch J_ frac m_r^ frac kg .m^ .kilogrammetersquared. Nun gilt Drehimpulserhaltung: L_ &mustbe L_ J_ omega_ J_ omega_ J_ pi f_ J_ pi f_ J_ pi fracpiT_ J_ pi fracpiT_ T_ fracJ_J_ T_ .s
Contained in these collections:
-
Drehimpulserhaltung bei änderndem Trägheitsmoment by TeXercises
Asked Quantity:
Umlaufzeit \(T\)
in
Sekunde \(\rm s\)
Physical Quantity
Revolutionsperiode
Zeit für einen vollen Kreis/Umlauf
Unit
Seit 1967 ist eine Sekunde das 9.192.631.770-fache der Periodendauer der Strahlung, die dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes von Atomen des Nuklids 133Cs entspricht.
Base?
SI?
Metric?
Coherent?
Imperial?