Sinussatz im Trapez
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Gegeben ist ein Trapez mit den Diagonalen e und f sowie alpha_ang und alpha_ang. center tikzpicturescale. %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path C -- A -- D pic fill opacity above left colorpurple "alpha_" draw - thick fillpurple! angleC--A--D; path C -- A -- B pic fill opacity below right colorred "alpha_" draw - thick fillred! angleB--A--C; drawthick A -- B; drawthick A -- D; tikzpicture center Berechne die Seitenlänge a.
Solution:
Man kann zunächst den Gesamtwinkel alpha bestimmen: alpha alpha_+alpha_ ang+ang ang center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center Damit kann man nun den Winkel beta berechnen: beta ang-alpha ang-alpha_-alpha_ ang-ang-ang ang center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; path D -- C -- A pic fill opacity colorviolet "gamma" draw - thick fillviolet! angleD--C--A; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center Man berechnet nun gamma: gamma ang-beta-alpha_ ang-ang-ang ang Anschliess kann man den Sinussatz verwen um d zu ermitteln: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left colorviolet d; %Diagonale drawdensely dashed thick colorgreen A -- C nodemidway below slopede; %Winkel path D -- C -- A pic fill opacity colorviolet "gamma" draw - thick fillviolet! angleD--C--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; drawthick A -- B; drawthick colorviolet A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center fracesinbeta fracdsingamma &Rightarrow dfracesinbeta singamma . Damit kann man nun wieder mit Sinussatz delta bestimmen: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; path A -- B -- D pic fill opacity below colorblue "delta" draw - thick fillblue! angleD--B--A; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center fracdsindelta fracfsinalpha &Rightarrow deltaarccosleftfracd sinalphafright ang. Anschliess bestimmt man den Winkel epsilon mithilfe der Winkelme eines Dreiecks: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path A -- D -- B pic fill opacity colorTurquoise "epsilon" draw - thick fillTurquoise! angleA--D--B; path A -- B -- D pic fill opacity below colorblue "delta" draw - thick fillblue! angleD--B--A; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center epsilon ang-alpha-delta ang. Mit diesen Angaben ist es schliesslich möglich wieder mit Sinussatz die Seitenlänge a zu bestimmen wie in der Aufgabe gefordert: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below colorTurquoise a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorblue "alpha" draw - thick fillblue! angleB--A--D; path A -- D -- B pic fill opacity colorTurquoise "epsilon" draw - thick fillTurquoise! angleA--D--B; drawthick colorTurquoise A -- B; drawthick A -- D; drawthick C -- D; tikzpicture center fracfsinalpha fracasinepsilon &Rightarrow afracfsinalpha sinepsilon .
Gegeben ist ein Trapez mit den Diagonalen e und f sowie alpha_ang und alpha_ang. center tikzpicturescale. %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path C -- A -- D pic fill opacity above left colorpurple "alpha_" draw - thick fillpurple! angleC--A--D; path C -- A -- B pic fill opacity below right colorred "alpha_" draw - thick fillred! angleB--A--C; drawthick A -- B; drawthick A -- D; tikzpicture center Berechne die Seitenlänge a.
Solution:
Man kann zunächst den Gesamtwinkel alpha bestimmen: alpha alpha_+alpha_ ang+ang ang center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center Damit kann man nun den Winkel beta berechnen: beta ang-alpha ang-alpha_-alpha_ ang-ang-ang ang center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; path D -- C -- A pic fill opacity colorviolet "gamma" draw - thick fillviolet! angleD--C--A; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center Man berechnet nun gamma: gamma ang-beta-alpha_ ang-ang-ang ang Anschliess kann man den Sinussatz verwen um d zu ermitteln: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left colorviolet d; %Diagonale drawdensely dashed thick colorgreen A -- C nodemidway below slopede; %Winkel path D -- C -- A pic fill opacity colorviolet "gamma" draw - thick fillviolet! angleD--C--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; drawthick A -- B; drawthick colorviolet A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center fracesinbeta fracdsingamma &Rightarrow dfracesinbeta singamma . Damit kann man nun wieder mit Sinussatz delta bestimmen: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; path A -- B -- D pic fill opacity below colorblue "delta" draw - thick fillblue! angleD--B--A; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center fracdsindelta fracfsinalpha &Rightarrow deltaarccosleftfracd sinalphafright ang. Anschliess bestimmt man den Winkel epsilon mithilfe der Winkelme eines Dreiecks: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path A -- D -- B pic fill opacity colorTurquoise "epsilon" draw - thick fillTurquoise! angleA--D--B; path A -- B -- D pic fill opacity below colorblue "delta" draw - thick fillblue! angleD--B--A; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center epsilon ang-alpha-delta ang. Mit diesen Angaben ist es schliesslich möglich wieder mit Sinussatz die Seitenlänge a zu bestimmen wie in der Aufgabe gefordert: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below colorTurquoise a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorblue "alpha" draw - thick fillblue! angleB--A--D; path A -- D -- B pic fill opacity colorTurquoise "epsilon" draw - thick fillTurquoise! angleA--D--B; drawthick colorTurquoise A -- B; drawthick A -- D; drawthick C -- D; tikzpicture center fracfsinalpha fracasinepsilon &Rightarrow afracfsinalpha sinepsilon .
Meta Information
Exercise:
Gegeben ist ein Trapez mit den Diagonalen e und f sowie alpha_ang und alpha_ang. center tikzpicturescale. %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path C -- A -- D pic fill opacity above left colorpurple "alpha_" draw - thick fillpurple! angleC--A--D; path C -- A -- B pic fill opacity below right colorred "alpha_" draw - thick fillred! angleB--A--C; drawthick A -- B; drawthick A -- D; tikzpicture center Berechne die Seitenlänge a.
Solution:
Man kann zunächst den Gesamtwinkel alpha bestimmen: alpha alpha_+alpha_ ang+ang ang center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center Damit kann man nun den Winkel beta berechnen: beta ang-alpha ang-alpha_-alpha_ ang-ang-ang ang center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; path D -- C -- A pic fill opacity colorviolet "gamma" draw - thick fillviolet! angleD--C--A; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center Man berechnet nun gamma: gamma ang-beta-alpha_ ang-ang-ang ang Anschliess kann man den Sinussatz verwen um d zu ermitteln: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left colorviolet d; %Diagonale drawdensely dashed thick colorgreen A -- C nodemidway below slopede; %Winkel path D -- C -- A pic fill opacity colorviolet "gamma" draw - thick fillviolet! angleD--C--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; drawthick A -- B; drawthick colorviolet A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center fracesinbeta fracdsingamma &Rightarrow dfracesinbeta singamma . Damit kann man nun wieder mit Sinussatz delta bestimmen: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; path A -- B -- D pic fill opacity below colorblue "delta" draw - thick fillblue! angleD--B--A; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center fracdsindelta fracfsinalpha &Rightarrow deltaarccosleftfracd sinalphafright ang. Anschliess bestimmt man den Winkel epsilon mithilfe der Winkelme eines Dreiecks: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path A -- D -- B pic fill opacity colorTurquoise "epsilon" draw - thick fillTurquoise! angleA--D--B; path A -- B -- D pic fill opacity below colorblue "delta" draw - thick fillblue! angleD--B--A; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center epsilon ang-alpha-delta ang. Mit diesen Angaben ist es schliesslich möglich wieder mit Sinussatz die Seitenlänge a zu bestimmen wie in der Aufgabe gefordert: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below colorTurquoise a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorblue "alpha" draw - thick fillblue! angleB--A--D; path A -- D -- B pic fill opacity colorTurquoise "epsilon" draw - thick fillTurquoise! angleA--D--B; drawthick colorTurquoise A -- B; drawthick A -- D; drawthick C -- D; tikzpicture center fracfsinalpha fracasinepsilon &Rightarrow afracfsinalpha sinepsilon .
Gegeben ist ein Trapez mit den Diagonalen e und f sowie alpha_ang und alpha_ang. center tikzpicturescale. %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path C -- A -- D pic fill opacity above left colorpurple "alpha_" draw - thick fillpurple! angleC--A--D; path C -- A -- B pic fill opacity below right colorred "alpha_" draw - thick fillred! angleB--A--C; drawthick A -- B; drawthick A -- D; tikzpicture center Berechne die Seitenlänge a.
Solution:
Man kann zunächst den Gesamtwinkel alpha bestimmen: alpha alpha_+alpha_ ang+ang ang center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center Damit kann man nun den Winkel beta berechnen: beta ang-alpha ang-alpha_-alpha_ ang-ang-ang ang center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; path D -- C -- A pic fill opacity colorviolet "gamma" draw - thick fillviolet! angleD--C--A; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center Man berechnet nun gamma: gamma ang-beta-alpha_ ang-ang-ang ang Anschliess kann man den Sinussatz verwen um d zu ermitteln: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left colorviolet d; %Diagonale drawdensely dashed thick colorgreen A -- C nodemidway below slopede; %Winkel path D -- C -- A pic fill opacity colorviolet "gamma" draw - thick fillviolet! angleD--C--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; drawthick A -- B; drawthick colorviolet A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center fracesinbeta fracdsingamma &Rightarrow dfracesinbeta singamma . Damit kann man nun wieder mit Sinussatz delta bestimmen: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path C -- D -- A pic fill opacity colorgreen "beta" draw - thick fillgreen! angleA--D--C; path A -- B -- D pic fill opacity below colorblue "delta" draw - thick fillblue! angleD--B--A; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center fracdsindelta fracfsinalpha &Rightarrow deltaarccosleftfracd sinalphafright ang. Anschliess bestimmt man den Winkel epsilon mithilfe der Winkelme eines Dreiecks: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorpurple A -- C nodemidway below slopede; drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorred "alpha" draw - thick fillred! angleB--A--D; path A -- D -- E pic fill opacity colorred "alpha" draw - thick fillred! angleE--D--A; path A -- D -- B pic fill opacity colorTurquoise "epsilon" draw - thick fillTurquoise! angleA--D--B; path A -- B -- D pic fill opacity below colorblue "delta" draw - thick fillblue! angleD--B--A; drawthick A -- B; drawthick A -- D; drawthick C -- D; drawthick dashed D -- E; tikzpicture center epsilon ang-alpha-delta ang. Mit diesen Angaben ist es schliesslich möglich wieder mit Sinussatz die Seitenlänge a zu bestimmen wie in der Aufgabe gefordert: center tikzpicturescale %Koordinaten coordinatelabelbelow left:A A at ; coordinatelabelbelow right:B B at ; coordinatelabelabove right:C C at ; coordinatelabelabove left:D D at ; coordinate E at ; %Viereck - Füllung fillcolorblack! fillblack! thick A -- B -- C -- D -- cycle; %Viereck - Seiten drawthick A -- B nodemidway below colorTurquoise a; drawthick B -- C nodemidway above right b; drawthick C -- D nodemidway above c; drawthick D -- A nodemidway above left d; %Diagonale drawdensely dashed thick colorblue!!white B -- D nodemidway below slopedf; %Winkel path D -- A -- B pic fill opacity colorblue "alpha" draw - thick fillblue! angleB--A--D; path A -- D -- B pic fill opacity colorTurquoise "epsilon" draw - thick fillTurquoise! angleA--D--B; drawthick colorTurquoise A -- B; drawthick A -- D; drawthick C -- D; tikzpicture center fracfsinalpha fracasinepsilon &Rightarrow afracfsinalpha sinepsilon .
Contained in these collections: