Tiefe des Sees
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Temperatur \(T\) / Volumen \(V\) / Druck \(p\) / Ortsfaktor \(g\) / Höhe \(h\) / Stoffmenge \(n\) / Dichte \(\varrho\) /
The following formulas must be used to solve the exercise:
\(p = \varrho g h \quad \) \(pV = nRT \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Eine Luftblase von VeO Volumen löst sich vom Grund eines Sees wo die Temperatur TeO beträgt. Diese Blase steigt dann zur Oberfläche auf wo die Temperatur TzO beträgt und sie ein Volumen von VzO hat. Es ist von einem äusseren Luftdruck von poO auszugehen. Berechne die Tiefe des Sees.
Solution:
Geg V_ VeO Ve T_ TeO Te T_ TzO Tz V_ VzO Vz p_ pzO pz textSee Rightarrow rho RWa % GesStrecke/Tiefe/Höheh sim % In der Tiefe des Sees müsste der Druck SolQtypefracV_T_V_T_p_VzX*TeX*pzX/VeX*TzXPa al p_ fracp_V_T_fracT_V_ peF fracVz TeVe Tz pz pe betragen. Der Anteil des Wassers an diesem Druck also der totale ohne den Anteil des Luftdruckes beträgt SolQtypqtyfracV_T_V_T_- p_peX-pzXPa al p p_-p_ peF-p_ pF pe - pz p. Die Tiefe des Sees ist somit SolQtyhqtyfracV_T_V_T_- fracp_rho gpX/RWaX*ncgXm al h fracprho g fracpFrho g hF fracpRWa ncg h approx hS % h hF &approx hS Das sind rund m.
Eine Luftblase von VeO Volumen löst sich vom Grund eines Sees wo die Temperatur TeO beträgt. Diese Blase steigt dann zur Oberfläche auf wo die Temperatur TzO beträgt und sie ein Volumen von VzO hat. Es ist von einem äusseren Luftdruck von poO auszugehen. Berechne die Tiefe des Sees.
Solution:
Geg V_ VeO Ve T_ TeO Te T_ TzO Tz V_ VzO Vz p_ pzO pz textSee Rightarrow rho RWa % GesStrecke/Tiefe/Höheh sim % In der Tiefe des Sees müsste der Druck SolQtypefracV_T_V_T_p_VzX*TeX*pzX/VeX*TzXPa al p_ fracp_V_T_fracT_V_ peF fracVz TeVe Tz pz pe betragen. Der Anteil des Wassers an diesem Druck also der totale ohne den Anteil des Luftdruckes beträgt SolQtypqtyfracV_T_V_T_- p_peX-pzXPa al p p_-p_ peF-p_ pF pe - pz p. Die Tiefe des Sees ist somit SolQtyhqtyfracV_T_V_T_- fracp_rho gpX/RWaX*ncgXm al h fracprho g fracpFrho g hF fracpRWa ncg h approx hS % h hF &approx hS Das sind rund m.
Meta Information
Exercise:
Eine Luftblase von VeO Volumen löst sich vom Grund eines Sees wo die Temperatur TeO beträgt. Diese Blase steigt dann zur Oberfläche auf wo die Temperatur TzO beträgt und sie ein Volumen von VzO hat. Es ist von einem äusseren Luftdruck von poO auszugehen. Berechne die Tiefe des Sees.
Solution:
Geg V_ VeO Ve T_ TeO Te T_ TzO Tz V_ VzO Vz p_ pzO pz textSee Rightarrow rho RWa % GesStrecke/Tiefe/Höheh sim % In der Tiefe des Sees müsste der Druck SolQtypefracV_T_V_T_p_VzX*TeX*pzX/VeX*TzXPa al p_ fracp_V_T_fracT_V_ peF fracVz TeVe Tz pz pe betragen. Der Anteil des Wassers an diesem Druck also der totale ohne den Anteil des Luftdruckes beträgt SolQtypqtyfracV_T_V_T_- p_peX-pzXPa al p p_-p_ peF-p_ pF pe - pz p. Die Tiefe des Sees ist somit SolQtyhqtyfracV_T_V_T_- fracp_rho gpX/RWaX*ncgXm al h fracprho g fracpFrho g hF fracpRWa ncg h approx hS % h hF &approx hS Das sind rund m.
Eine Luftblase von VeO Volumen löst sich vom Grund eines Sees wo die Temperatur TeO beträgt. Diese Blase steigt dann zur Oberfläche auf wo die Temperatur TzO beträgt und sie ein Volumen von VzO hat. Es ist von einem äusseren Luftdruck von poO auszugehen. Berechne die Tiefe des Sees.
Solution:
Geg V_ VeO Ve T_ TeO Te T_ TzO Tz V_ VzO Vz p_ pzO pz textSee Rightarrow rho RWa % GesStrecke/Tiefe/Höheh sim % In der Tiefe des Sees müsste der Druck SolQtypefracV_T_V_T_p_VzX*TeX*pzX/VeX*TzXPa al p_ fracp_V_T_fracT_V_ peF fracVz TeVe Tz pz pe betragen. Der Anteil des Wassers an diesem Druck also der totale ohne den Anteil des Luftdruckes beträgt SolQtypqtyfracV_T_V_T_- p_peX-pzXPa al p p_-p_ peF-p_ pF pe - pz p. Die Tiefe des Sees ist somit SolQtyhqtyfracV_T_V_T_- fracp_rho gpX/RWaX*ncgXm al h fracprho g fracpFrho g hF fracpRWa ncg h approx hS % h hF &approx hS Das sind rund m.
Contained in these collections:
-
Luftblase mit T by TeXercises
Asked Quantity:
Länge \(\ell\)
in
Meter \(\rm m\)
Physical Quantity
Strecke, Distanz
Ausdehnung eines Objekts
Unit
Der Meter ist dadurch definiert, dass der Lichtgeschwindigkeit im Vakuum \(c\) ein fester Wert zugewiesen wurde und die Sekunde (\(\rm s\)) ebenfalls über eine Naturkonstante, die Schwingungsfrequenz definiert ist.
Base?
SI?
Metric?
Coherent?
Imperial?