Transistoren
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Erkläre wie ein Transistor funktioniert!
Solution:
center tikzpicture % Draw the PNP transistor draw nodepnp anchorE Q ; % Add labels nodeanchoreast at Q.E E; nodeanchornorth at Q.B B; nodeanchorwest at Q.C C; % Add a voltage source and connections optional example draw Q.C -- ++ nodeanchorsouth +V_cc; draw Q.B -- ++- nodeanchoreast Input; draw Q.E -- ++- nodeanchornorth Output; % Draw arrows for clarity optional example draw- Q.B ++-. -- Q.B; draw- Q.E ++-. -- Q.E; tikzpicture center center tikzpicturescale. % Draw the silicon layers of the PNP transistor % Emitter P fillred! rectangle . nodemidway Emitter P; % Base N fillblue! . rectangle nodemidway Base N; % Collector P fillred! rectangle . nodemidway Collector P; % Draw boundaries drawthick rectangle .; drawthick -- ; % Separate emitter from base drawthick . -- .; % Separate base from collector % Label doping materials nodeanchorwest at .. P-doped silicon High; nodeanchorwest at .. N-doped silicon Low; nodeanchorwest at .. P-doped silicon Moderate; % Add arrows to indicate flow of charge draw-thick .. -- .. nodemidwayright Holes; draw-thick .. -- .. nodemidwayright Electrons; % Add terminals nodedrawcirclefillblackscale.labelleft:Emitter at . ; nodedrawcirclefillblackscale.labelleft:Base at . ; nodedrawcirclefillblackscale.labelleft:Collector at . ; % External labels nodecenter at -. PNP Transistor Structure with Silicon Doping; tikzpicture center center tikzpicturescale. % Parameters defatomsize. % Size of atoms defelexsize. % Size of electrons % Draw the silicon lattice foreach x in foreach y in % Draw the silicon atom shadeball colorblue x y circle atomsize nodewhite Si; % Draw valence electrons around the atom fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom % Add a title optional nodecenter at .-. Silicon Lattice with Valence Electrons per Atom; tikzpicture center center tikzpicturescale. % Parameters defatomsize. % Size of atoms defelexsize. % Size of electrons % Draw the silicon lattice with n-doping foreach x in foreach y in % Condition for n-doping: Replace some Si atoms with Phosphorus P ifnumx ifnumy % Draw Phosphorus dopant atom shadeball colorgreen x y circle atomsize nodewhite P; % Valence electrons for Phosphorus fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom fillred x+. y+. circle elexsize; % Extra electron else % Draw silicon atom shadeball colorblue x y circle atomsize nodewhite Si; % Valence electrons for silicon fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom fi fi % Add a title optional nodecenter at .-. Silicon Lattice with n-Doping Phosphorus; tikzpicture center center tikzpicturescale. % Parameters defatomsize. % Size of atoms defelexsize. % Size of electrons % Draw the silicon lattice with p-doping foreach x in foreach y in % Condition for p-doping: Replace some Si atoms with Boron B ifnumx ifnumy % Draw Boron dopant atom shadeball colorpurple x y circle atomsize nodewhite B; % Valence electrons for Boron fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top % No electron on the bottom indicating a hole % Draw a hole missing electron drawredthick x y-. circle elexsize; else % Draw silicon atom shadeball colorblue x y circle atomsize nodewhite Si; % Valence electrons for silicon fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom fi fi % Add a title optional nodecenter at .-. Silicon Lattice with p-Doping Boron; tikzpicture center
Erkläre wie ein Transistor funktioniert!
Solution:
center tikzpicture % Draw the PNP transistor draw nodepnp anchorE Q ; % Add labels nodeanchoreast at Q.E E; nodeanchornorth at Q.B B; nodeanchorwest at Q.C C; % Add a voltage source and connections optional example draw Q.C -- ++ nodeanchorsouth +V_cc; draw Q.B -- ++- nodeanchoreast Input; draw Q.E -- ++- nodeanchornorth Output; % Draw arrows for clarity optional example draw- Q.B ++-. -- Q.B; draw- Q.E ++-. -- Q.E; tikzpicture center center tikzpicturescale. % Draw the silicon layers of the PNP transistor % Emitter P fillred! rectangle . nodemidway Emitter P; % Base N fillblue! . rectangle nodemidway Base N; % Collector P fillred! rectangle . nodemidway Collector P; % Draw boundaries drawthick rectangle .; drawthick -- ; % Separate emitter from base drawthick . -- .; % Separate base from collector % Label doping materials nodeanchorwest at .. P-doped silicon High; nodeanchorwest at .. N-doped silicon Low; nodeanchorwest at .. P-doped silicon Moderate; % Add arrows to indicate flow of charge draw-thick .. -- .. nodemidwayright Holes; draw-thick .. -- .. nodemidwayright Electrons; % Add terminals nodedrawcirclefillblackscale.labelleft:Emitter at . ; nodedrawcirclefillblackscale.labelleft:Base at . ; nodedrawcirclefillblackscale.labelleft:Collector at . ; % External labels nodecenter at -. PNP Transistor Structure with Silicon Doping; tikzpicture center center tikzpicturescale. % Parameters defatomsize. % Size of atoms defelexsize. % Size of electrons % Draw the silicon lattice foreach x in foreach y in % Draw the silicon atom shadeball colorblue x y circle atomsize nodewhite Si; % Draw valence electrons around the atom fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom % Add a title optional nodecenter at .-. Silicon Lattice with Valence Electrons per Atom; tikzpicture center center tikzpicturescale. % Parameters defatomsize. % Size of atoms defelexsize. % Size of electrons % Draw the silicon lattice with n-doping foreach x in foreach y in % Condition for n-doping: Replace some Si atoms with Phosphorus P ifnumx ifnumy % Draw Phosphorus dopant atom shadeball colorgreen x y circle atomsize nodewhite P; % Valence electrons for Phosphorus fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom fillred x+. y+. circle elexsize; % Extra electron else % Draw silicon atom shadeball colorblue x y circle atomsize nodewhite Si; % Valence electrons for silicon fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom fi fi % Add a title optional nodecenter at .-. Silicon Lattice with n-Doping Phosphorus; tikzpicture center center tikzpicturescale. % Parameters defatomsize. % Size of atoms defelexsize. % Size of electrons % Draw the silicon lattice with p-doping foreach x in foreach y in % Condition for p-doping: Replace some Si atoms with Boron B ifnumx ifnumy % Draw Boron dopant atom shadeball colorpurple x y circle atomsize nodewhite B; % Valence electrons for Boron fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top % No electron on the bottom indicating a hole % Draw a hole missing electron drawredthick x y-. circle elexsize; else % Draw silicon atom shadeball colorblue x y circle atomsize nodewhite Si; % Valence electrons for silicon fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom fi fi % Add a title optional nodecenter at .-. Silicon Lattice with p-Doping Boron; tikzpicture center
Meta Information
Exercise:
Erkläre wie ein Transistor funktioniert!
Solution:
center tikzpicture % Draw the PNP transistor draw nodepnp anchorE Q ; % Add labels nodeanchoreast at Q.E E; nodeanchornorth at Q.B B; nodeanchorwest at Q.C C; % Add a voltage source and connections optional example draw Q.C -- ++ nodeanchorsouth +V_cc; draw Q.B -- ++- nodeanchoreast Input; draw Q.E -- ++- nodeanchornorth Output; % Draw arrows for clarity optional example draw- Q.B ++-. -- Q.B; draw- Q.E ++-. -- Q.E; tikzpicture center center tikzpicturescale. % Draw the silicon layers of the PNP transistor % Emitter P fillred! rectangle . nodemidway Emitter P; % Base N fillblue! . rectangle nodemidway Base N; % Collector P fillred! rectangle . nodemidway Collector P; % Draw boundaries drawthick rectangle .; drawthick -- ; % Separate emitter from base drawthick . -- .; % Separate base from collector % Label doping materials nodeanchorwest at .. P-doped silicon High; nodeanchorwest at .. N-doped silicon Low; nodeanchorwest at .. P-doped silicon Moderate; % Add arrows to indicate flow of charge draw-thick .. -- .. nodemidwayright Holes; draw-thick .. -- .. nodemidwayright Electrons; % Add terminals nodedrawcirclefillblackscale.labelleft:Emitter at . ; nodedrawcirclefillblackscale.labelleft:Base at . ; nodedrawcirclefillblackscale.labelleft:Collector at . ; % External labels nodecenter at -. PNP Transistor Structure with Silicon Doping; tikzpicture center center tikzpicturescale. % Parameters defatomsize. % Size of atoms defelexsize. % Size of electrons % Draw the silicon lattice foreach x in foreach y in % Draw the silicon atom shadeball colorblue x y circle atomsize nodewhite Si; % Draw valence electrons around the atom fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom % Add a title optional nodecenter at .-. Silicon Lattice with Valence Electrons per Atom; tikzpicture center center tikzpicturescale. % Parameters defatomsize. % Size of atoms defelexsize. % Size of electrons % Draw the silicon lattice with n-doping foreach x in foreach y in % Condition for n-doping: Replace some Si atoms with Phosphorus P ifnumx ifnumy % Draw Phosphorus dopant atom shadeball colorgreen x y circle atomsize nodewhite P; % Valence electrons for Phosphorus fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom fillred x+. y+. circle elexsize; % Extra electron else % Draw silicon atom shadeball colorblue x y circle atomsize nodewhite Si; % Valence electrons for silicon fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom fi fi % Add a title optional nodecenter at .-. Silicon Lattice with n-Doping Phosphorus; tikzpicture center center tikzpicturescale. % Parameters defatomsize. % Size of atoms defelexsize. % Size of electrons % Draw the silicon lattice with p-doping foreach x in foreach y in % Condition for p-doping: Replace some Si atoms with Boron B ifnumx ifnumy % Draw Boron dopant atom shadeball colorpurple x y circle atomsize nodewhite B; % Valence electrons for Boron fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top % No electron on the bottom indicating a hole % Draw a hole missing electron drawredthick x y-. circle elexsize; else % Draw silicon atom shadeball colorblue x y circle atomsize nodewhite Si; % Valence electrons for silicon fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom fi fi % Add a title optional nodecenter at .-. Silicon Lattice with p-Doping Boron; tikzpicture center
Erkläre wie ein Transistor funktioniert!
Solution:
center tikzpicture % Draw the PNP transistor draw nodepnp anchorE Q ; % Add labels nodeanchoreast at Q.E E; nodeanchornorth at Q.B B; nodeanchorwest at Q.C C; % Add a voltage source and connections optional example draw Q.C -- ++ nodeanchorsouth +V_cc; draw Q.B -- ++- nodeanchoreast Input; draw Q.E -- ++- nodeanchornorth Output; % Draw arrows for clarity optional example draw- Q.B ++-. -- Q.B; draw- Q.E ++-. -- Q.E; tikzpicture center center tikzpicturescale. % Draw the silicon layers of the PNP transistor % Emitter P fillred! rectangle . nodemidway Emitter P; % Base N fillblue! . rectangle nodemidway Base N; % Collector P fillred! rectangle . nodemidway Collector P; % Draw boundaries drawthick rectangle .; drawthick -- ; % Separate emitter from base drawthick . -- .; % Separate base from collector % Label doping materials nodeanchorwest at .. P-doped silicon High; nodeanchorwest at .. N-doped silicon Low; nodeanchorwest at .. P-doped silicon Moderate; % Add arrows to indicate flow of charge draw-thick .. -- .. nodemidwayright Holes; draw-thick .. -- .. nodemidwayright Electrons; % Add terminals nodedrawcirclefillblackscale.labelleft:Emitter at . ; nodedrawcirclefillblackscale.labelleft:Base at . ; nodedrawcirclefillblackscale.labelleft:Collector at . ; % External labels nodecenter at -. PNP Transistor Structure with Silicon Doping; tikzpicture center center tikzpicturescale. % Parameters defatomsize. % Size of atoms defelexsize. % Size of electrons % Draw the silicon lattice foreach x in foreach y in % Draw the silicon atom shadeball colorblue x y circle atomsize nodewhite Si; % Draw valence electrons around the atom fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom % Add a title optional nodecenter at .-. Silicon Lattice with Valence Electrons per Atom; tikzpicture center center tikzpicturescale. % Parameters defatomsize. % Size of atoms defelexsize. % Size of electrons % Draw the silicon lattice with n-doping foreach x in foreach y in % Condition for n-doping: Replace some Si atoms with Phosphorus P ifnumx ifnumy % Draw Phosphorus dopant atom shadeball colorgreen x y circle atomsize nodewhite P; % Valence electrons for Phosphorus fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom fillred x+. y+. circle elexsize; % Extra electron else % Draw silicon atom shadeball colorblue x y circle atomsize nodewhite Si; % Valence electrons for silicon fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom fi fi % Add a title optional nodecenter at .-. Silicon Lattice with n-Doping Phosphorus; tikzpicture center center tikzpicturescale. % Parameters defatomsize. % Size of atoms defelexsize. % Size of electrons % Draw the silicon lattice with p-doping foreach x in foreach y in % Condition for p-doping: Replace some Si atoms with Boron B ifnumx ifnumy % Draw Boron dopant atom shadeball colorpurple x y circle atomsize nodewhite B; % Valence electrons for Boron fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top % No electron on the bottom indicating a hole % Draw a hole missing electron drawredthick x y-. circle elexsize; else % Draw silicon atom shadeball colorblue x y circle atomsize nodewhite Si; % Valence electrons for silicon fillred x+. y circle elexsize; % Right fillred x-. y circle elexsize; % Left fillred x y+. circle elexsize; % Top fillred x y-. circle elexsize; % Bottom fi fi % Add a title optional nodecenter at .-. Silicon Lattice with p-Doping Boron; tikzpicture center
Contained in these collections:
-
Digitalelektronik 1 by uz