Vermischte Aufgaben
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
L"ose die folgen Aufgaben ohne unmittelbaren Einsatz des Taschenrechners. Achte auf eine formal korrekte Darstellung des L"osungswegs. enumerate itema Berechne displaystyle_^infty dfracxbig+x^big^ textdx. medskip itemb Berechne displaystyle lim_x to dfractexte^x -texte^-x - xx - sin x. medskip itemc L"ose die Gleichung z + operatornameRez + operatornameImz |z|^ + overlinez + texti f"ur z in mathbbC. medskip itemd Beschreibe die Differentialgleichung y^ + - x^+y' m"oglichst genau mit Fachausdr"ucken und l"ose das Anfangswertproblem f"ur y. enumerate
Solution:
enumerate itema Substititution u +x^ quadRightarrowquad textdu x textdx quadRightarrowquad textdx /x textdu edt _^infty dfracxbig+x^big^ textdx lim_atoinfty _^+a^ dfracxu^ fracx textdu lim_atoinfty frac_^+a^ dfracu^ textdu ex lim_atoinfty left-dfracuright_^+a^ lim_atoinfty leftdfrac - dfrac+a^ right frac ed hfill P itemb displaystylelim_x to texte^x -texte^-x - x lim_x to x - sin x Bernoulli-de l'H^opital medskip edt lim_x to dfractexte^x -texte^-x - xx - sin x lim_x to dfractexte^x + texte^-x - - cos x lim_x to dfractexte^x - texte^-xsin x lim_x to dfractexte^x + texte^-xcos x ed hfill P itemc Ansatz: z a + b texti edt z + operatornameRez + operatornameImz |z|^ + overlinez + texti a + b texti + a + b a^ + b^ + a - b texti + texti a^ + b^ - a - b quad textGleichung der Realteile b - quad textGleichung der Imaginärteile ed b Rightarrow a^- a aa- Rightarrow a_ a_ Rightarrow z_ texti z_ + texti hfill P itemd gew"ohnliche nichtlineare inhomogene separierbare DGL .~Ordnung hfill P medskip edt y^ + - x^+y' %ex % dfracy^ + dfractextdytextdx % dfracx^ + dfracy^ + textdy dfracx^ + textdx arctan y arctan x + C y tanarctan x + C textAWP: quad tanarctan + C quadRightarrowquad C pi/ y tanleftarctan x + pi/ right ed hfill P enumerate
L"ose die folgen Aufgaben ohne unmittelbaren Einsatz des Taschenrechners. Achte auf eine formal korrekte Darstellung des L"osungswegs. enumerate itema Berechne displaystyle_^infty dfracxbig+x^big^ textdx. medskip itemb Berechne displaystyle lim_x to dfractexte^x -texte^-x - xx - sin x. medskip itemc L"ose die Gleichung z + operatornameRez + operatornameImz |z|^ + overlinez + texti f"ur z in mathbbC. medskip itemd Beschreibe die Differentialgleichung y^ + - x^+y' m"oglichst genau mit Fachausdr"ucken und l"ose das Anfangswertproblem f"ur y. enumerate
Solution:
enumerate itema Substititution u +x^ quadRightarrowquad textdu x textdx quadRightarrowquad textdx /x textdu edt _^infty dfracxbig+x^big^ textdx lim_atoinfty _^+a^ dfracxu^ fracx textdu lim_atoinfty frac_^+a^ dfracu^ textdu ex lim_atoinfty left-dfracuright_^+a^ lim_atoinfty leftdfrac - dfrac+a^ right frac ed hfill P itemb displaystylelim_x to texte^x -texte^-x - x lim_x to x - sin x Bernoulli-de l'H^opital medskip edt lim_x to dfractexte^x -texte^-x - xx - sin x lim_x to dfractexte^x + texte^-x - - cos x lim_x to dfractexte^x - texte^-xsin x lim_x to dfractexte^x + texte^-xcos x ed hfill P itemc Ansatz: z a + b texti edt z + operatornameRez + operatornameImz |z|^ + overlinez + texti a + b texti + a + b a^ + b^ + a - b texti + texti a^ + b^ - a - b quad textGleichung der Realteile b - quad textGleichung der Imaginärteile ed b Rightarrow a^- a aa- Rightarrow a_ a_ Rightarrow z_ texti z_ + texti hfill P itemd gew"ohnliche nichtlineare inhomogene separierbare DGL .~Ordnung hfill P medskip edt y^ + - x^+y' %ex % dfracy^ + dfractextdytextdx % dfracx^ + dfracy^ + textdy dfracx^ + textdx arctan y arctan x + C y tanarctan x + C textAWP: quad tanarctan + C quadRightarrowquad C pi/ y tanleftarctan x + pi/ right ed hfill P enumerate
Meta Information
Exercise:
L"ose die folgen Aufgaben ohne unmittelbaren Einsatz des Taschenrechners. Achte auf eine formal korrekte Darstellung des L"osungswegs. enumerate itema Berechne displaystyle_^infty dfracxbig+x^big^ textdx. medskip itemb Berechne displaystyle lim_x to dfractexte^x -texte^-x - xx - sin x. medskip itemc L"ose die Gleichung z + operatornameRez + operatornameImz |z|^ + overlinez + texti f"ur z in mathbbC. medskip itemd Beschreibe die Differentialgleichung y^ + - x^+y' m"oglichst genau mit Fachausdr"ucken und l"ose das Anfangswertproblem f"ur y. enumerate
Solution:
enumerate itema Substititution u +x^ quadRightarrowquad textdu x textdx quadRightarrowquad textdx /x textdu edt _^infty dfracxbig+x^big^ textdx lim_atoinfty _^+a^ dfracxu^ fracx textdu lim_atoinfty frac_^+a^ dfracu^ textdu ex lim_atoinfty left-dfracuright_^+a^ lim_atoinfty leftdfrac - dfrac+a^ right frac ed hfill P itemb displaystylelim_x to texte^x -texte^-x - x lim_x to x - sin x Bernoulli-de l'H^opital medskip edt lim_x to dfractexte^x -texte^-x - xx - sin x lim_x to dfractexte^x + texte^-x - - cos x lim_x to dfractexte^x - texte^-xsin x lim_x to dfractexte^x + texte^-xcos x ed hfill P itemc Ansatz: z a + b texti edt z + operatornameRez + operatornameImz |z|^ + overlinez + texti a + b texti + a + b a^ + b^ + a - b texti + texti a^ + b^ - a - b quad textGleichung der Realteile b - quad textGleichung der Imaginärteile ed b Rightarrow a^- a aa- Rightarrow a_ a_ Rightarrow z_ texti z_ + texti hfill P itemd gew"ohnliche nichtlineare inhomogene separierbare DGL .~Ordnung hfill P medskip edt y^ + - x^+y' %ex % dfracy^ + dfractextdytextdx % dfracx^ + dfracy^ + textdy dfracx^ + textdx arctan y arctan x + C y tanarctan x + C textAWP: quad tanarctan + C quadRightarrowquad C pi/ y tanleftarctan x + pi/ right ed hfill P enumerate
L"ose die folgen Aufgaben ohne unmittelbaren Einsatz des Taschenrechners. Achte auf eine formal korrekte Darstellung des L"osungswegs. enumerate itema Berechne displaystyle_^infty dfracxbig+x^big^ textdx. medskip itemb Berechne displaystyle lim_x to dfractexte^x -texte^-x - xx - sin x. medskip itemc L"ose die Gleichung z + operatornameRez + operatornameImz |z|^ + overlinez + texti f"ur z in mathbbC. medskip itemd Beschreibe die Differentialgleichung y^ + - x^+y' m"oglichst genau mit Fachausdr"ucken und l"ose das Anfangswertproblem f"ur y. enumerate
Solution:
enumerate itema Substititution u +x^ quadRightarrowquad textdu x textdx quadRightarrowquad textdx /x textdu edt _^infty dfracxbig+x^big^ textdx lim_atoinfty _^+a^ dfracxu^ fracx textdu lim_atoinfty frac_^+a^ dfracu^ textdu ex lim_atoinfty left-dfracuright_^+a^ lim_atoinfty leftdfrac - dfrac+a^ right frac ed hfill P itemb displaystylelim_x to texte^x -texte^-x - x lim_x to x - sin x Bernoulli-de l'H^opital medskip edt lim_x to dfractexte^x -texte^-x - xx - sin x lim_x to dfractexte^x + texte^-x - - cos x lim_x to dfractexte^x - texte^-xsin x lim_x to dfractexte^x + texte^-xcos x ed hfill P itemc Ansatz: z a + b texti edt z + operatornameRez + operatornameImz |z|^ + overlinez + texti a + b texti + a + b a^ + b^ + a - b texti + texti a^ + b^ - a - b quad textGleichung der Realteile b - quad textGleichung der Imaginärteile ed b Rightarrow a^- a aa- Rightarrow a_ a_ Rightarrow z_ texti z_ + texti hfill P itemd gew"ohnliche nichtlineare inhomogene separierbare DGL .~Ordnung hfill P medskip edt y^ + - x^+y' %ex % dfracy^ + dfractextdytextdx % dfracx^ + dfracy^ + textdy dfracx^ + textdx arctan y arctan x + C y tanarctan x + C textAWP: quad tanarctan + C quadRightarrowquad C pi/ y tanleftarctan x + pi/ right ed hfill P enumerate
Contained in these collections:
-
PAM Matura 2016 Stans by uz