Gangunterschied und Phasendifferenz
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Die Phasifferenz ist die Differenz der beiden Argumente der Wellenfunktion zweier Wellen. Haben zum Beispiel zwei Wellen u_ und u_ eine Phasifferenz Deltavarphi so gilt für deren Funktionen al u_xt hat u sinomega t - kx u_xt hat u sinomega t - kx + Deltavarphi. abclist abc Finde den Zusammenhang zwischen der Phasifferenz und dem Gangunterschied. abc Für welche Phasifferenz tritt konstruktive und destruktive Interferenz aus? abclist
Solution:
abclist abc Haben zwei Wellen einen Gangunterschied von delta so können wir sie als al u_xt hat u sinomega t - kx u_xt hat u sinomega t - kx-delta schreiben. Die zweite Funktion wird nach Ausmultiplizieren zu al u_xt hat u sinomega t -kx + kdelta. Wir können also die Phasifferenz von Delta varphi kdelta herauslesen. abc Konstruktive Interferenz tritt auf wenn der Gangunterschied ein Vielfaches der Wellenlänge ist al delta n lambda quad nin mathbbN_. Setzen wir das in den Ausdruck für die Phasifferenz ein so folgt al Delta varphi k n lambda pi n. Für eine Phasifferenz die ein gerades Vielfaches von pi ist tritt also konstruktive Interferenz auf. Ähnlich erhalten wir für destruktive Interferenz al Deltavarphi k qtyn+frac lambda n+pi. Für eine Phasifferenz die ein ungerades Vielfaches von pi ist tritt also destruktive Interferenz auf. abclist
Die Phasifferenz ist die Differenz der beiden Argumente der Wellenfunktion zweier Wellen. Haben zum Beispiel zwei Wellen u_ und u_ eine Phasifferenz Deltavarphi so gilt für deren Funktionen al u_xt hat u sinomega t - kx u_xt hat u sinomega t - kx + Deltavarphi. abclist abc Finde den Zusammenhang zwischen der Phasifferenz und dem Gangunterschied. abc Für welche Phasifferenz tritt konstruktive und destruktive Interferenz aus? abclist
Solution:
abclist abc Haben zwei Wellen einen Gangunterschied von delta so können wir sie als al u_xt hat u sinomega t - kx u_xt hat u sinomega t - kx-delta schreiben. Die zweite Funktion wird nach Ausmultiplizieren zu al u_xt hat u sinomega t -kx + kdelta. Wir können also die Phasifferenz von Delta varphi kdelta herauslesen. abc Konstruktive Interferenz tritt auf wenn der Gangunterschied ein Vielfaches der Wellenlänge ist al delta n lambda quad nin mathbbN_. Setzen wir das in den Ausdruck für die Phasifferenz ein so folgt al Delta varphi k n lambda pi n. Für eine Phasifferenz die ein gerades Vielfaches von pi ist tritt also konstruktive Interferenz auf. Ähnlich erhalten wir für destruktive Interferenz al Deltavarphi k qtyn+frac lambda n+pi. Für eine Phasifferenz die ein ungerades Vielfaches von pi ist tritt also destruktive Interferenz auf. abclist
Meta Information
Exercise:
Die Phasifferenz ist die Differenz der beiden Argumente der Wellenfunktion zweier Wellen. Haben zum Beispiel zwei Wellen u_ und u_ eine Phasifferenz Deltavarphi so gilt für deren Funktionen al u_xt hat u sinomega t - kx u_xt hat u sinomega t - kx + Deltavarphi. abclist abc Finde den Zusammenhang zwischen der Phasifferenz und dem Gangunterschied. abc Für welche Phasifferenz tritt konstruktive und destruktive Interferenz aus? abclist
Solution:
abclist abc Haben zwei Wellen einen Gangunterschied von delta so können wir sie als al u_xt hat u sinomega t - kx u_xt hat u sinomega t - kx-delta schreiben. Die zweite Funktion wird nach Ausmultiplizieren zu al u_xt hat u sinomega t -kx + kdelta. Wir können also die Phasifferenz von Delta varphi kdelta herauslesen. abc Konstruktive Interferenz tritt auf wenn der Gangunterschied ein Vielfaches der Wellenlänge ist al delta n lambda quad nin mathbbN_. Setzen wir das in den Ausdruck für die Phasifferenz ein so folgt al Delta varphi k n lambda pi n. Für eine Phasifferenz die ein gerades Vielfaches von pi ist tritt also konstruktive Interferenz auf. Ähnlich erhalten wir für destruktive Interferenz al Deltavarphi k qtyn+frac lambda n+pi. Für eine Phasifferenz die ein ungerades Vielfaches von pi ist tritt also destruktive Interferenz auf. abclist
Die Phasifferenz ist die Differenz der beiden Argumente der Wellenfunktion zweier Wellen. Haben zum Beispiel zwei Wellen u_ und u_ eine Phasifferenz Deltavarphi so gilt für deren Funktionen al u_xt hat u sinomega t - kx u_xt hat u sinomega t - kx + Deltavarphi. abclist abc Finde den Zusammenhang zwischen der Phasifferenz und dem Gangunterschied. abc Für welche Phasifferenz tritt konstruktive und destruktive Interferenz aus? abclist
Solution:
abclist abc Haben zwei Wellen einen Gangunterschied von delta so können wir sie als al u_xt hat u sinomega t - kx u_xt hat u sinomega t - kx-delta schreiben. Die zweite Funktion wird nach Ausmultiplizieren zu al u_xt hat u sinomega t -kx + kdelta. Wir können also die Phasifferenz von Delta varphi kdelta herauslesen. abc Konstruktive Interferenz tritt auf wenn der Gangunterschied ein Vielfaches der Wellenlänge ist al delta n lambda quad nin mathbbN_. Setzen wir das in den Ausdruck für die Phasifferenz ein so folgt al Delta varphi k n lambda pi n. Für eine Phasifferenz die ein gerades Vielfaches von pi ist tritt also konstruktive Interferenz auf. Ähnlich erhalten wir für destruktive Interferenz al Deltavarphi k qtyn+frac lambda n+pi. Für eine Phasifferenz die ein ungerades Vielfaches von pi ist tritt also destruktive Interferenz auf. abclist
Contained in these collections:
-
Interferenz by aej
-
Interferenz by pw