Kegel im Wasser
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
The following formulas must be used to solve the exercise:
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein gerader Kreiskegel aus Plexiglas .grampercubiccentimeter mit .m Höhe und .m Grundflächenradius welcher gerade vollständig eingetaucht ist wird aus dem Wasser gehoben. Welche Hubarbeit wird dabei verrichtet? Die Masse des Seils ist zu vernachlässigen. center tikzpicturescale. defyH; filldrawcolorblue!!white fillblue!!white yH--yH ------cycle; %drawsnakecoilsegment aspect segment amplitudept segment lengthpt colorblue!!white very thick .--.; drawcolorgreen!!black -.--; drawcolorgreen!!black -.--; drawcolorgreen!!black thick -.yH--.yH node left H; node at Wasser; % Kegel filldrawcolorred!!black fillred!!white yH-- --yH to controls+:. and +:. yH; drawcolorred!!black yH to controls+:-. and +:-. yH; drawvery thin colorred!!black --yH; drawthick colorblack snakecoilsegment aspect segment amplitude.pt segment lengthpt yH--*yH+; % Kegel filldrawcolorred!!black fillred!!white -.+yH-- .--+.+yH to controls+:. and +:. -.+yH; drawcolorred!!black -.+yH to controls+:-. and +:-. +.+yH; drawvery thin colorred!!black .--.+yH; drawthick colorblack snakecoilsegment aspect segment amplitude.pt segment lengthpt .+yH--*yH+; % Kegel filldrawcolorred!!black fillred!!white -+yH-- --++yH to controls+:. and +:. -+yH; drawcolorred!!black -+yH to controls+:-. and +:-. ++yH; drawvery thin colorred!!black --+yH; drawthick colorblack snakecoilsegment aspect segment amplitude.pt segment lengthpt +yH--*yH+; drawthick colorblack -- nodemidway above R; drawthick colorblack -- nodemidway right H; tikzpicture center
Solution:
Die Zugkraft mit welcher man am Seil ziehen muss besteht aus zwei Komponenten: Der konstanten von der bereits herausgezogenen Höhe unabhängigen Gewichtskraft und dem Auftrieb welcher durch den noch im Wasser eingetauchten Teil des Kegels zustande kommt. Die Zugkraft kann also wie folgt geschrieben werden: F_textZugh F_G -F_Ah mg - F_Ah rho_x V g -rho_w V_w g rho_x fracpi R^ H g - rho_w fracpi tilde R^ tilde h rho_x fracpi R^ H g - rho_w fracpi leftfracRtilde hHright^ tilde h rho_x fracpi R^ H g - rho_w fracpi leftfracR H-hHright^ H-h fracpi g R^Hleftrho_x - leftfracH-hHright^rho_wright. Die Hubarbeit ist W_textHub _^H F_textZugh mboxdh fracpi gR^H^leftrho_x-fracrho_wright J.
Ein gerader Kreiskegel aus Plexiglas .grampercubiccentimeter mit .m Höhe und .m Grundflächenradius welcher gerade vollständig eingetaucht ist wird aus dem Wasser gehoben. Welche Hubarbeit wird dabei verrichtet? Die Masse des Seils ist zu vernachlässigen. center tikzpicturescale. defyH; filldrawcolorblue!!white fillblue!!white yH--yH ------cycle; %drawsnakecoilsegment aspect segment amplitudept segment lengthpt colorblue!!white very thick .--.; drawcolorgreen!!black -.--; drawcolorgreen!!black -.--; drawcolorgreen!!black thick -.yH--.yH node left H; node at Wasser; % Kegel filldrawcolorred!!black fillred!!white yH-- --yH to controls+:. and +:. yH; drawcolorred!!black yH to controls+:-. and +:-. yH; drawvery thin colorred!!black --yH; drawthick colorblack snakecoilsegment aspect segment amplitude.pt segment lengthpt yH--*yH+; % Kegel filldrawcolorred!!black fillred!!white -.+yH-- .--+.+yH to controls+:. and +:. -.+yH; drawcolorred!!black -.+yH to controls+:-. and +:-. +.+yH; drawvery thin colorred!!black .--.+yH; drawthick colorblack snakecoilsegment aspect segment amplitude.pt segment lengthpt .+yH--*yH+; % Kegel filldrawcolorred!!black fillred!!white -+yH-- --++yH to controls+:. and +:. -+yH; drawcolorred!!black -+yH to controls+:-. and +:-. ++yH; drawvery thin colorred!!black --+yH; drawthick colorblack snakecoilsegment aspect segment amplitude.pt segment lengthpt +yH--*yH+; drawthick colorblack -- nodemidway above R; drawthick colorblack -- nodemidway right H; tikzpicture center
Solution:
Die Zugkraft mit welcher man am Seil ziehen muss besteht aus zwei Komponenten: Der konstanten von der bereits herausgezogenen Höhe unabhängigen Gewichtskraft und dem Auftrieb welcher durch den noch im Wasser eingetauchten Teil des Kegels zustande kommt. Die Zugkraft kann also wie folgt geschrieben werden: F_textZugh F_G -F_Ah mg - F_Ah rho_x V g -rho_w V_w g rho_x fracpi R^ H g - rho_w fracpi tilde R^ tilde h rho_x fracpi R^ H g - rho_w fracpi leftfracRtilde hHright^ tilde h rho_x fracpi R^ H g - rho_w fracpi leftfracR H-hHright^ H-h fracpi g R^Hleftrho_x - leftfracH-hHright^rho_wright. Die Hubarbeit ist W_textHub _^H F_textZugh mboxdh fracpi gR^H^leftrho_x-fracrho_wright J.
Meta Information
Exercise:
Ein gerader Kreiskegel aus Plexiglas .grampercubiccentimeter mit .m Höhe und .m Grundflächenradius welcher gerade vollständig eingetaucht ist wird aus dem Wasser gehoben. Welche Hubarbeit wird dabei verrichtet? Die Masse des Seils ist zu vernachlässigen. center tikzpicturescale. defyH; filldrawcolorblue!!white fillblue!!white yH--yH ------cycle; %drawsnakecoilsegment aspect segment amplitudept segment lengthpt colorblue!!white very thick .--.; drawcolorgreen!!black -.--; drawcolorgreen!!black -.--; drawcolorgreen!!black thick -.yH--.yH node left H; node at Wasser; % Kegel filldrawcolorred!!black fillred!!white yH-- --yH to controls+:. and +:. yH; drawcolorred!!black yH to controls+:-. and +:-. yH; drawvery thin colorred!!black --yH; drawthick colorblack snakecoilsegment aspect segment amplitude.pt segment lengthpt yH--*yH+; % Kegel filldrawcolorred!!black fillred!!white -.+yH-- .--+.+yH to controls+:. and +:. -.+yH; drawcolorred!!black -.+yH to controls+:-. and +:-. +.+yH; drawvery thin colorred!!black .--.+yH; drawthick colorblack snakecoilsegment aspect segment amplitude.pt segment lengthpt .+yH--*yH+; % Kegel filldrawcolorred!!black fillred!!white -+yH-- --++yH to controls+:. and +:. -+yH; drawcolorred!!black -+yH to controls+:-. and +:-. ++yH; drawvery thin colorred!!black --+yH; drawthick colorblack snakecoilsegment aspect segment amplitude.pt segment lengthpt +yH--*yH+; drawthick colorblack -- nodemidway above R; drawthick colorblack -- nodemidway right H; tikzpicture center
Solution:
Die Zugkraft mit welcher man am Seil ziehen muss besteht aus zwei Komponenten: Der konstanten von der bereits herausgezogenen Höhe unabhängigen Gewichtskraft und dem Auftrieb welcher durch den noch im Wasser eingetauchten Teil des Kegels zustande kommt. Die Zugkraft kann also wie folgt geschrieben werden: F_textZugh F_G -F_Ah mg - F_Ah rho_x V g -rho_w V_w g rho_x fracpi R^ H g - rho_w fracpi tilde R^ tilde h rho_x fracpi R^ H g - rho_w fracpi leftfracRtilde hHright^ tilde h rho_x fracpi R^ H g - rho_w fracpi leftfracR H-hHright^ H-h fracpi g R^Hleftrho_x - leftfracH-hHright^rho_wright. Die Hubarbeit ist W_textHub _^H F_textZugh mboxdh fracpi gR^H^leftrho_x-fracrho_wright J.
Ein gerader Kreiskegel aus Plexiglas .grampercubiccentimeter mit .m Höhe und .m Grundflächenradius welcher gerade vollständig eingetaucht ist wird aus dem Wasser gehoben. Welche Hubarbeit wird dabei verrichtet? Die Masse des Seils ist zu vernachlässigen. center tikzpicturescale. defyH; filldrawcolorblue!!white fillblue!!white yH--yH ------cycle; %drawsnakecoilsegment aspect segment amplitudept segment lengthpt colorblue!!white very thick .--.; drawcolorgreen!!black -.--; drawcolorgreen!!black -.--; drawcolorgreen!!black thick -.yH--.yH node left H; node at Wasser; % Kegel filldrawcolorred!!black fillred!!white yH-- --yH to controls+:. and +:. yH; drawcolorred!!black yH to controls+:-. and +:-. yH; drawvery thin colorred!!black --yH; drawthick colorblack snakecoilsegment aspect segment amplitude.pt segment lengthpt yH--*yH+; % Kegel filldrawcolorred!!black fillred!!white -.+yH-- .--+.+yH to controls+:. and +:. -.+yH; drawcolorred!!black -.+yH to controls+:-. and +:-. +.+yH; drawvery thin colorred!!black .--.+yH; drawthick colorblack snakecoilsegment aspect segment amplitude.pt segment lengthpt .+yH--*yH+; % Kegel filldrawcolorred!!black fillred!!white -+yH-- --++yH to controls+:. and +:. -+yH; drawcolorred!!black -+yH to controls+:-. and +:-. ++yH; drawvery thin colorred!!black --+yH; drawthick colorblack snakecoilsegment aspect segment amplitude.pt segment lengthpt +yH--*yH+; drawthick colorblack -- nodemidway above R; drawthick colorblack -- nodemidway right H; tikzpicture center
Solution:
Die Zugkraft mit welcher man am Seil ziehen muss besteht aus zwei Komponenten: Der konstanten von der bereits herausgezogenen Höhe unabhängigen Gewichtskraft und dem Auftrieb welcher durch den noch im Wasser eingetauchten Teil des Kegels zustande kommt. Die Zugkraft kann also wie folgt geschrieben werden: F_textZugh F_G -F_Ah mg - F_Ah rho_x V g -rho_w V_w g rho_x fracpi R^ H g - rho_w fracpi tilde R^ tilde h rho_x fracpi R^ H g - rho_w fracpi leftfracRtilde hHright^ tilde h rho_x fracpi R^ H g - rho_w fracpi leftfracR H-hHright^ H-h fracpi g R^Hleftrho_x - leftfracH-hHright^rho_wright. Die Hubarbeit ist W_textHub _^H F_textZugh mboxdh fracpi gR^H^leftrho_x-fracrho_wright J.
Contained in these collections:
-
PAM Matura 2010 Stans by uz
-
Aus Wasser ziehen by TeXercises
-
Matura-Training Mechanik by uz
-
Arbeitsintegrale 1 by uz